Correction: Cardiac ryanodine receptor activation by a high Ca2+ store load is reversed in a reducing cytoplasmic redox environment

نویسندگان

  • Amy D. Hanna
  • Alex Lam
  • Chris Thekkedam
  • Esther M. Gallant
  • Nicole A. Beard
  • Angela F. Dulhunty
چکیده

There was an error published in J. Cell Sci. 127, 4531-4541. Incorrect concentrations of the components used to establish the oxidising redox potential were given in the ‘Redox buffering’ section of the Materials and Methods. The correct sentence should read: An oxidising redox potential of −180 mV was established with 0.95 mM GSH and 0.1 mM GSSG. The authors apologise to the readers for any confusion that this error might have caused.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac ryanodine receptor activation by a high Ca2+ store load is reversed in a reducing cytoplasmic redox environment

Here, we report the impact of redox potential on isolated cardiac ryanodine receptor (RyR2) channel activity and its response to physiological changes in luminal [Ca(2+)]. Basal leak from the sarcoplasmic reticulum is required for normal Ca(2+) handling, but excess diastolic Ca(2+) leak attributed to oxidative stress is thought to lower the threshold of RyR2 for spontaneous sarcoplasmic reticul...

متن کامل

Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.

1. In muscle, intracellular calcium concentration, hence skeletal muscle force and cardiac output, is regulated by uptake and release of calcium from the sarcoplasmic reticulum. The ryanodine receptor (RyR) forms the calcium release channel in the sarcoplasmic reticulum. 2. The free [Ca2+] in the sarcoplasmic reticulum regulates the excitability of this store by stimulating the Ca2+ release cha...

متن کامل

Peptide fragments of the dihydropyridine receptor can modulate cardiac ryanodine receptor channel activity and sarcoplasmic reticulum Ca2+ release.

We show that peptide fragments of the dihydropyridine receptor II-III loop alter cardiac RyR (ryanodine receptor) channel activity in a cytoplasmic Ca2+-dependent manner. The peptides were AC (Thr-793-Ala-812 of the cardiac dihydropyridine receptor), AS (Thr-671-Leu-690 of the skeletal dihydropyridine receptor), and a modified AS peptide [AS(D-R18)], with an extended helical structure. The pept...

متن کامل

Activation of cardiac ryanodine receptors by cardiac glycosides.

This study investigated the effects of cardiac glycosides on single-channel activity of the cardiac sarcoplasmic reticulum (SR) Ca2+ release channels or ryanodine receptor (RyR2) channels and how this action might contribute to their inotropic and/or toxic actions. Heavy SR vesicles isolated from canine left ventricle were fused with artificial planar lipid bilayers to measure single RyR2 chann...

متن کامل

Regulation of mouse egg activation: presence of ryanodine receptors and effects of microinjected ryanodine and cyclic ADP ribose on uninseminated and inseminated eggs.

Sperm-induced activation of mammalian eggs is associated with a transient increase in Ca2+ concentrations thought to be derived from inositol 1,4,5-trisphosphate-sensitive and -insensitive intracellular stores. Whereas the importance of inositol 1,4,5-trisphosphate-sensitive Ca2+ stores has been evaluated, the identity and role of inositol 1,4,5-trisphosphate-insensitive stores are poorly under...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2016